
Enumerating Distinct Chessboard Tilings

Introduction

Èdouard Lucas:

The theory of recurrent sequences is an inexhaustible mine
which contains all the properties of numbers; by calculating the
successive terms of such sequences, decomposing them into
their prime factors and seeking out by experimentation the laws
of appearance and reproduction of the prime numbers, one can
advance in a systematic manner the study of the properties of
numbers and their application to all branches of mathematics.
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Abstract

Counting the number of distinct colorings of various discrete
objects, via Burnside’s Lemma and Pòlya Counting, is a traditional
problem in combinatorics. We address a related question for more
general tiling situations: Given an m× n chessboard and a fixed set
of (possibly colored) tiles, how many distinct tilings exist, up to
symmetry? More specifically, we are interested in the recurrent
sequences formed by counting the number of distinct tilings of
boards of size (m× 1), (m× 2), (m× 3), . . ., for a fixed set of tiles
and some natural number m. The terms of these sequences can be
used to construct upper bounds on the orders of recurrences satisfied
by other classes of tiling problems not reduced by symmetry.

We present explicit results and closed forms for several
well–known classes of tiling problems, including domino tilings and
tilings with squares of arbitrary sizes. Several of these cases have
convenient representations in terms of the combinatorial Fibonacci
numbers. Finally, we give a characterization of all 1× n tiling
problems in terms of the generalized Fibonacci numbers and colored
Fibonacci tilings.
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Motivation

• Fibonacci and Lucas Tilings

• Why?

fmfn + fm−1fn−1 = fm+n (1)∑
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• 1× n Tilings [1]
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Chessboard Tilings

Tiling Recurrences

Definition

Let T be a fixed set of tiles and m ≥ 1 an integer. Construct a sequence
{tn} by defining the nth term to be the number of ways to tile a m× n
board with tiles in T .

Theorem (Webb, Criddle, DeTemple [9])

For all sets T the sequence defined above satisfies a linear, homogeneous,
constant coefficient recurrence relation.
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Chessboard Tilings

Methodology

(Proof Sketch).

Consider all of the possible ways to cover the initial column with tiles in
T and construct a linear system (in the successor operator) of relations
between the resulting sequences. The determinant of this system is the
characteristic polynomial of an annihilating recurrence relation (not
necessarily minimal).
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Chessboard Tilings

Sequences of Sequences

• This existence proof leads to a “natural” and “accurate” upper
bound of 2md on the order of the recurrence relation satisfied by
{tn} for arbitrary T .

• In particular, I am interested in the sequence of sequences that is
formed from a fixed tile set T by letting the number of rows in the
board vary.

• That is, consider the related family of sequences {tmn } and their
respective recurrence order bounds.
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Recurrence Orders

Why Recurrence Orders?

• Identities [3]
• How many cases to check?

• Initial Conditions
• Computational Feasibility
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“Classroom”
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Chessboard Rearrangements

Original Problem (Honsberger)[5]

Problem

A classroom has 5 rows of 5 desks per row. The teacher requests each
pupil to change his seat by going either to the seat in front, the one
behind, the one to his left, or the one to his right (of course not all these
options are possible to all students). Is it possible to carry out his
directive?

Solution ([6, 8])

No. However, Cooper et al. gave several interesting counting
generalizations with Fibonacci relations.
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Chessboard Rearrangements

Seating Rearrangements and Tilings
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Chessboard Rearrangements

Rules

In order to count more general rearrangements on chessboards, we
constructed the following problem statement:

Definition

Given a m× n board with a single marker on each square decide on a set
of permissible moves. We want to count the number of legitimate
“rearrangements” of these markers subject to the following rules:

• Each marker must make one “move”.

• After all of the markers have moved, each square must contain
exactly one marker.
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Arbitrary Graphs
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Chessboard Rearrangements

Simple Graphs

Graph Rearrangements With Stays
Pn 0, 1, 0, 1, 0... fn
Cn 0, 1, 2, 4, 2, 4... ln + 2 = fn + fn−2 + 2
Kn D(n) n!

Kn,n (n!)2
∑n

i=0 [(n)i]
2

Km,n with m ≤ n 0
∑m

i=0(m)i(n)i
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Chessboard Rearrangements

More Complex Graphs [2]

• Wheel Graphs:
nfn+2 + fn + fn−2 − 2n+ 2

• Flat Wheel Graphs:

fn +

n∑
l=1

fn−l

l−2∑
j=0

[fj ]

+ (fl−1fn−l) +

(
fl−1

n−l−1∑
k=0

[fk]

)
• Flower Graphs:

l(k−2)n+2+nf(k−2)n−1+2nf(n−2)k−(n−1)+2n

k−2∑
i=1

f(k−2)(n−i−1)−1

• Dutch Windmills:

(fn−1)
m + 2m(fn−2 + 1)(fn−1)

m−1
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Chessboard Rearrangements

8× 8 Rook Graph
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Chessboard Rearrangements

8× 8 Knight Graph
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Chessboard Rearrangements

8× 8 Bishop Graph
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Chessboard Rearrangements

Chesspiece Rearrangements

• 1× n

• Kings: fn
• Queens/Rooks: n!
• Bishops/Knights: 1

• 2× n

• Kings: an = 6an−1 + 12an−2 − 16an−2

• Bishops: f2
n

• Knights: f4
n and f2

nf
2
n−1

• Rooks:
∑n

i=0

(
n
i

)
((n− i)!)2
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Chessboard Rearrangements

Rearrangement Recurrences

We may proceed as in the case of tilings to define sequences
corresponding to a fixed set of permissible moves and fixed number of
rows.

Theorem (D.)

Let m ≥ 1 be an integer. For any fixed set of permissible moves such
that there is an upper bound on the horizontal displacement of each
piece, the sequence {rn} defined by the number of legitimate
rearrangements on a m× n board satisfies a linear, homogeneous,
constant coefficient recurrence relation.
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Chessboard Rearrangements

Rearrangement Recurrence Orders

The bounds derived from the proof of this theorem are 4md, even worse
than the tiling case. Additionally, computational feasibility is an even
larger issue.

Kings
m 1 2 3 4 5 6
Bound 4 16 64 256 1024 4096
Order 2 3 10 27 53 100+

Knights
m 1 2 3 4
Bound 4 16 256 4096
Order 1 8 27 lots
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Motivating Example

Example

Let T = {[1× 1], [2× 2]}.

Table : Toy Example

m 1 2 3 4 5 6 7 8 9 10
Upper Bound 1 4 9 25 64 169 441 1,156 3,025 7,921
O(Tn) 1 2 2 3 4 6 8 14 19 32
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Preliminary Observations
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m = 7
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Motivating Example

Simple Symmetries

Lemma

The number of endings with no consecutive 1× 1 tiles is equal to Pn+2.

Lemma

The number of distinct Fibonacci tilings S(fn) of order n up to

symmetry is equal to
1

2
(f2k + fk+1) when n = 2k and

1

2
(f2k+1 + fk)

when n = 2k + 1.

Lemma

The number of distinct Padovan tilings S(Pn)of order n up to symmetry

is equal to
1

2
(P2k + Pk+2) when n = 2k and

1

2
(P2k+1 + Pk−1) when

n = 2k + 1.
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Motivating Example

Lemma Proofs

• The first lemma follows from a standard bijective double counting
argument.

• The key to the remaining lemmas is to realize that since every
reflection of a particular tiling is another tiling we are over–counting
by half, modulo the self–symmetric tilings. Adding these back in and
a little parity bookkeeping completes the results.
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Motivating Example

Self–Symmetric Fibonacci Tilings
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Motivating Example

Example: Conclusion

Theorem

The minimal order of the recurrence relation for the number of tilings of
a k × n rectangle with 1× 1 and 2× 2 squares is at most
S(fn)− S(Pn) + 1.

Table : Toy Example

m 1 2 3 4 5 6 7 8 9
Upper Bound 1 4 9 25 64 169 441 1,156 3,025
S(fn)− S(Pn) + 1 1 2 2 3 4 7 10 17 26
O(Tn) 1 2 2 3 4 6 8 14 19
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Results

General 1× n Case

In the preceding example, knowing two 1× n cases allowed us to reduce
the upper bound significantly without a large amount of extra effort.
Here we give an expression for all 1× n rectangular tilings, where the
tiles in T are allowed to have multiple colors.
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Notation

We begin by defining some convenient notation. Since we are covering
boards of dimension {1× n|n ∈ N}. Let T = (a1, a2, a3, . . .), where am
is the number of distinct colors of m–dominoes available. Then, Tn is the
number of ways to tile a 1× n rectangle with colored dominoes in T .
Connecting to our example, the Fibonacci numbers would be
T = (1, 1, 0, 0, 0, . . .) while the Padovan numbers have
T = (0, 1, 1, 0, 0, 0, . . .).
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Coefficients

We also need to define a set of coefficients based on the parity of the
domino length and the rectangle length.

cj =


Tn− j

2
j ≡ n ≡ 0 (mod 2)

0 j ≡ 0, n ≡ 1 (mod 2)
0 j ≡ 1, n ≡ 0 (mod 2)
Tn− j−1

2
j ≡ n ≡ 1 (mod 2)

(4)
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Coefficient Motivation
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Complete Characterization of 1× n Tilings

Theorem

Let T be some set of colored k–dominoes, then the number of distinct
tilings up to symmetry of a 1× n rectangle is equal to

1

2

(
Tn +

∞∑
i=1

aici +
Tn

2

2
+

(−1)nTn
2

2

)
(5)



Enumerating Distinct Chessboard Tilings

Results

Lucas Tilings

It is natural to wonder if these methods could be adapted to give a
similar formula for generalized Lucas tilings on a bracelet or necklace.
Unfortunately, the complexity of the underlying symmetric group makes
this a much more complex problem. Even in the simplest case we have:

Theorem

The number of distinct Lucas tilings of a 1× n bracelet up to symmetry
is:

dn−1
2 e∑

i=0

 1

n− i

∑
d|(i,n−1)

ϕ(d)

(n−i
d
i
d

) (6)



Enumerating Distinct Chessboard Tilings

Results

Lucas Tilings

It is natural to wonder if these methods could be adapted to give a
similar formula for generalized Lucas tilings on a bracelet or necklace.
Unfortunately, the complexity of the underlying symmetric group makes
this a much more complex problem. Even in the simplest case we have:

Theorem

The number of distinct Lucas tilings of a 1× n bracelet up to symmetry
is:

dn−1
2 e∑

i=0

 1

n− i

∑
d|(i,n−1)

ϕ(d)

(n−i
d
i
d

) (6)



Enumerating Distinct Chessboard Tilings

Results

Example 1

Theorem

The number of distinct rearrangements on a 2× n rectangle is

1

4

(
f2
2k + f2k + 2f2

k + 2f2
k−1
)

(7)

when n = 2k and
1

4

(
f2
2k+1 + f2k+1 + 2f2

k

)
(8)

when n = 2k + 1
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Example 2

Theorem

The number of distinct tilings of a 3× n rectangle with squares of size
1× 1 and 2× 2 is

1

3

(
22n−1 + 2n + 2n−1 +

1 + (−1)n

2

)
(9)

when n is odd, and
1

3

(
22n + 2n + 2n−1 + 1

)
(10)

when n is even.
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